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An Enquiry
Concerning Human
Understanding

“All reasonings concerning matter of
fact seem to be Tounded on the relation

A classic in modern
of cause and effect. By means of that philosophical lierature

relation alone we can go beyond the
evidence of our memory and senses.”

—— David Hume, 1748 >>>>




Captain Robert Falcon Scott

Imagine you went back to a century ago and

joined Captain Scott’'s Antarctic expedition ..
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Captain Robert Falcon Scott
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CaUSES Scurvy

"Consuming rotten
meat causes scurvy”



For more information, check

“Pathways Language Model (PalM):

Scaling to 540 Billion Parameters for

—l_h e A I S CO | | nq |_O \/\/ Breakthrough Performance”, 2022

LOGICAL INFERENCE CHAINS

SEMANTIC PARSING COMMON-SENSE REASONING

PROVERBS PATTERN RECOGNITION
ARITHMETIC TRANSLATION
CODE COMPLETION ¥ DIALOGUE
. JOKE EXPLANATIONS
READING COMPREHENSION pHYS|CS QA

SUMMARIZATION LANGUAGE UNDERSTANDING

540 billion parameters
https://aigoogleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

The PalLM pretraining dataset consists of a high-quality corpus of 780 billion tokens.



VWhat Can Go Wrong”

There is a strong correlation between rotten meat and a mysterious illness. During long
voyages, the consumption of rotten meat and the onset of this illness usually coincide;
however, sailors rarely experience it when they avoid eating spoiled meat. One day, Captain
Scott led his sailors on an expedition to Antarctica, supplying them with an abundance of
fresh meat instead of rotten meat. Would the sailors still be susceptible to this iliness?

No, if the sailors are consuming only fresh meat and avoiding rotten meat, the correlation
between rotten meat and the mysterious illness should not apply, and they would likely not

be susceptible to the illness during the expedition.

A failure case of ChatGPT: ChatGPT, one of the best Al-powered chatbots trained using
Reinforcement Learning from Human Feedback (RLHF) to align with human values.

P8



VWhat Can Go Wrong”
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There is a strong correlation between rotten meat and a my ?‘E During long
voyages, the consumption of rotten neat Ys sually coincide;
however, sailors rarel e Muad eating spmled meat One day, Captain
Scoﬁi asaé pedition to Antarctica, supplwn abundance of
fres instead of rotten meat Would % 6ﬁtw‘e to this illness?

No, if the sailors are Corwumuﬁj ;m&ka‘wﬂvgng rotten meat, the correlation

betweeg terious illness should not apply, and they would likely not
be susce€ptible to the illness during the expedition.

A failure case for ChatGPT: ChatGPT, one of the best Al-powered chatbots trained
using Reinforcement Learning from Human Feedoback (RLHF) to align with human values.
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large language models and eventually human-level AT will
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emerge—I don’t believe this at all, not for one second.”
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“This idea that we're going to just scale up the current
large language models and eventually human-level AT will
emerge—I don’t believe this at all, not for one second.”

Yann Lecun

“"Much of this data-centric history still haunts us today. We live in an
era that presumes Big Data to be the solution to all our problems.
Courses in “data science’ are proliferating in our universities, and jobs
for “data scientists” are lucrative in the companies that participate in
the ‘data economy.” But T hope with this book to convince you that

Judea Pearl data are profoundly dumb. *

P11




AT ||='l| .
T 7
eSigununnRuL 1777
S
=

TN

RN
II..
In,

\
X

3

TR
LY

et
G
0
-...'g..: o
\

77
P11

S
=
8!

i

SO,

“This idea that we're going to just scale up the current
large language models and eventually human-level AT will
emerge—I don’t believe this at all, not for one second.”
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Yann Lecun

“"Much of this data-centric history still haunts us today. We live in an
era that presumes Big Data to be the solution to all our problems.
Courses in “data science’ are proliferating in our universities, and jobs
for ‘data scientists’ are lucrative in the companies that participate in
the ‘data economy.” But T hope with this book to convince you that
data are profoundly dumb. *

Judea Pearl

" One of the big debates these days is: What are the elements
of higher-level cognition? Causality is one element of it.”

P12




Goals of This Tutorial

1. What is causal reinforcement learning and how is it different than

traditional reinforcement learning”?
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2. Different perspectives in the causal reinforcement learning literature.




Goals of This Tutorial

VWhat is causal reinforcement learning and how is it different than

traditional reinforcement learning”?

Different perspectives in the causal reinforcement learning literature.

Main results and techniques.
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Introduction
Causality
Reinforcement Learning

Causal Reinforcement Learning

Sample Efficiency
Generalization
Spurious Correlation

Beyond Return




Correlation vs. Causation

4
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There is a strong correlation between rotten meat and
scurvy in historical data, but eating rotten meat does
not cause scurvy. The lack of vitamin C does.

P17



Ladder of Causation

Judea Pearl

“The Book of Why”, 2018
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; = ACTIVITY:  Seeing, Observing @)
| —— < ' QUESTIONS: What iflsee...?
111 ,j (How would seeing X change my belief in Y?)
] bl EXAMPLES: What does a symptom tell me about a disease?
‘ What does a survey tell us about the election results?




L adder of Causation

Judea Pearl

" The Book of Why”, 2018

2. INTERVENTION
ACTIVITY: Doing, Intervening &
' QUESTIONS: Whatifldo...? How?

(What would Y be if | do X?)
EXAMPLES: If | take aspirin, will my headache be cured?

What if we ban cigarettes?

1. ASSOCIATION
ACTIVITY: Seeing, Observing @
' QUESTIONS: What iflsee...?
(How would seeing X change my belief in Y?)

EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the election results?




i Ladder of Causation

20 %3 COUNTERFACTUALS
~ | ACTIVITY: Imagining, Retrospection, Understanding @

QUESTIONS: What if | had done . .. ? Why?
(Was it X that caused Y? What if X had not
occurred? What if | had acted differently?)
EXAMPLES: Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not . .,
killed him? What if | had not smoked the last 2 years? The Book of Why", 2018

2. INTERVENTION
ACTIVITY: Doing, Intervening &)
' QUESTIONS: Whatifldo...? How?
(What would Y be if | do X?)
EXAMPLES: If | take aspirin, will my headache be cured?
What if we ban cigarettes?

1. ASSOCIATION |
ACTIVITY: Seeing, Observing @)

' QUESTIONS: Whatiflsee...?
(How would seeing X change my belief in Y?)
EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the election results?

Judea Pearl




Structural Causal Model (SCM)

Definition. An SCM is represented by a quadruple (V, U, F, P(U)), where
o V={Vy, V-, Vin} is a set of endogenous variables that are of interest in a research problem,

o U={U, Up,---, Uy} is a set of exogenous variables that represent the source of stochasticity in
the model and are determined by external factors that are generally unobservable,

e F ={f1,f2, -, fm} is a set of structural equations that assign values to each of the variables in V
such that f; maps PA(V;) U U; to V;, where PA(V;) S V\V;and U; € U,

e P(U) is the joint probability distribution of the exogenous variables in U.

U1J_LU2J_L...J_LUn

P21



Structural Causal Model (SCM)

Structural Equations

fX'X=UX
f21Z=a-X-I—UZ
frlY=b-X4c-Z+U,

An example of SCM with structural equations

F = {fx;fzify}

1,
=@l

X: food consumption,
Z: intake of vitamin C,
Y: occurrence of scurvy P22




Structural Causal Model (SCM)

Endogenous Variables

fx.X=UX
f21Z=a X+UZ
friy YEbiXt+tc{ZH U,y

An example of SCM with structural equations

F = {fx;fzify}

1,
=@l

X: food consumption,
Z: intake of vitamin C,
Y: occurrence of scurvy P23




Structural Causal Model (SCM)

Exogenous Variables

fX'X=UX
f21Z=a-X-I—UZ
frr Y=b-X+4c-Z +|Uy

An example of SCM with structural equations

F = {fx;fzify}

1,
=@l

X: food consumption,
Z: intake of vitamin C,
Y: occurrence of scurvy P24




Causal Graph

Mediator

fX: X:UX

« f L =a-X+U 7
food intake of occurrence of
consumption vitamin C scurvy fY: Y - b . X +cC- Z + UY

Causal Graph

An example of SCM with structural equations

= F= {fx;fzify}
g X: food consumption,
Z: intake of vitamin C,

Y: occurrence of scurvy P25




Observations vs. Interventions

S
e

Observations

Passively observe people with
different food consumption.

P26




Observations vs

Interventions

Observations

Q: What does consuming citrus fruits tell
me about the possibility of getting scurvy?

P(Y | X=0 1)

P27



Observations vs. Interventions

Observations Interventions
Q: What does consuming citrus fruits tell Actively force all sailors to
me about the possibility of getting scurvy? consume fresh citrus fruits.
P(Y|Xx=0 ")

P28




Observations vs. Interventions

Observations Interventions
Q: What does consuming citrus fruits tell Q: What if all sailors consume fresh citrus
me about the possibility of getting scurvy? fruits, will they get scurvy?
Py |x=00) P(Y |do (X=11))

P29




Interventions

fX:Xz New SCM
fz: Z =a-X+U, «
fY: Y=C-Z+UY

Interventions

Q: What if all sailors consume fresh citrus

7 fruits, will they get scurvy?
P(Y |do (X=0".))

New Causal Graph

P30



Statistical vs. Causal Model

3| . =
i . —@

do(1;)
Py !

©0® 00®

Difference between statistical (left) and causal models (right) on a given set of
three variables. While a statistical model specifies a single probability distribution,
a causal model represents a set of distributions, one for each possible
intervention (indicated with a ®in the figure)

For more information, check

“Towards Causal Representation

Learning”, 2021

Causal models are inherently more
powerful than statistical modell

P31



Counterfactuals

&x /— Factuol World— @i@,_:CQ ~

L 4 Ny vy \
I\UXI \UZ/ \UY/
-~ 7 ~ /\ -

Observations

Passively observe people who
consume rotten meat can also
get scurvy.

P32




Counterfactuals

Dalall

Counterfactual | UX’ ! Uz, ! UY/

DTS

Counterfactuals
Imagine people who would have
consumed rotten meat choosing to
consume fresh citrus fruits instead.

P33



Counterfactuals

%, ~@ﬁ

Counterfactual | UX’ ! Uz, ! UY/

DTS

Counterfactuals

Q: Considering that they consumed rotten meat in
reality, would sailors have been protected from
scurvy if they had consumed enough citrus fruit”?

P(Yy—< X =8,y =)

P34



For more information, check

“Towards Caousal Representation
Learning”, 2021

Non-Caousal vs. Causal Factorization

Non-Causal Factorization

e.q., N

PO = | [POixy, - Xi)
i=1

= P(X1) : P(X2|X1) : P(X3|X1;X2) : P(X4|X1;X2;X3)
: P(X5|X1'X2'X3'X4) : P(X6|X11X2)X3JX4)X5)

P35



For more information, check

“Towards Caousal Representation

Learning”, 2021

Non-Caousal vs. Causal Factorization

Non-Causal Factorization

e.q., N

Causal Factorization

N
P = | |PCtixy, . %) Poo = | | Peipacx)
i=1 i=1
= P(X1) : P(X2|X1) : P(X3|X1;X2) : P(X4|X1;X2;X3) = P(X1) : P(X2|X1) : P(X3|X1) 'P(X4|X17X3:X6)
- P(Xs1X1, X2, X3, X4) - P(X| X1, X2, X3, X4, X5) * P(X51|Xe) - P(Xel|X1)

P36



For more information, check

“Towards Caousal Representation

Learning”, 2021

Non-Caousal vs. Causal Factorization

Non-Causal Factorization

e.q., N

Causal Factorization

N
P = | |PCtixy, . %) Poo = | | Peipacx)
i=1 i=1
= P(X1) : P(X2|X1) 1 P(X3|X1»X2) : P(X4|X1;X2;X3) = P(X1) : P(X2|X1) : P(X3|X1) 'P(X4|X1;X3;X6)
- P(X5|X1, X2, X3, Xy) - P(X61X1, X2, X3, X4, X5) - P(X5|X6) - P(XlX1)

Causal factorization yields practical computational advantages during inference. P37



For more information, check

“Towards Caousal Representation

Learning”, 2021

Independent Causal Mechanism

Non-Causal Factorization

e.q., N

Causal Factorization

N
P = | |PCtixy, . %) Poo = | | Peipacx)
i=1 =1
= P(X1) - P(X2|X1) - P(X3|X1, X2) - P(X4|X1, X2, X3) = P(X1) - P(Xz|X1) - P(X31X1) - P(X4lX1, X3, X6)
- P(X5|X1, X3, X3, X4) - P(X61X1, X2, X3, X4, X5) - P(X51Xe) - P(X6lX1)

Causal factorization is more robust to variations. P38



For more information, check
“Towards Caousal Representation

Learning”, 2021

Independent Causal Mechanism

Gndependent Causal Mechanisms (ICM) Principlb
The causal generative process of a system’s variables
is composed of autonomous modules that do not inform
or influence each other. In the probabilistic case, this
means that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform

Kor influence the other mechanisms. j

Applied to the causal factorization, this principle tells us that the factors should be

independent in the sense that

(a) changing (or performing an intervention upon) one mechanism P(X;|PA(X;))
does not change any of the other mechanisms P(X;|PA(X;)) (i # ).

(b) Knowing some other mechanisms P(X;|PA(X;)) (i # j) does not give us

information about a mechanism P(X;|PA(X;)). P39




sSummary (so far)

Pearl’'s Ladder of Causation is a conceptual framework that categorizes levels of causal

relationships, spanning from association, intervention, and counterfactuals.

] e




sSummary (so far)

Structural Causal Model (SCM) provides a powerful framework for representing and analyzing

causal relationships, offering a systematic approach to climb the Ladder of Causation.
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sSummary (so far)

Interventions refer to actively manipulating a variable. Each intervention defines a new joint

distribution but a statistical model can only captures one of them.
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sSummary (so far)

Counterfactuals allow us to envision the outcomes of different decisions through the lens of

imagination and retrospection.

] e




sSummary (so far)

Causal Factorization decompose a joint distribution into independent causal mechanisms,

yielding practical computational advantages and is robust to variations.

] e




sSummary (so far)

e Pearl's Ladder of Causation is a conceptual framework that categorizes levels of causal

relationships, spanning from association, intervention, and counterfactuals.

e Structural Causal Model (SCM) provides a powerful framework for representing and analyzing

causal relationships, offering a systematic approach to climb the Ladder of Causation.

e Interventions refer to actively manipulating a variable. Each intervention defines a new joint

distribution but a statistical model can only captures one of them.

e Counterfactuals allow us to envision the outcomes of different decisions through the lens of

imagination and retrospection.

e (Causal Factorization decompose a joint distribution into independent causal mechanisms,

yielding practical computational advantages and is robust to variations.

] e




Reinforcement Learning (RL)

Initial
Observation

J

Agent Environment

Receive an initial olbservation
P46



Reinforcement Learning (RL)

Action

J

Agent Environment

Maoke a decision
P47



Reinforcement Learning (RL)

New Observation
& Reward

Agent Environment

Receive and learning from feedback
P48



Reinforcement Learning (RL)

T
Observation
& Reward
e
+
Action
+ \_/
Agent Environment

The agent-environment feedback loop
P49



Markov Decision Process (MDP)

Definition (Markov decision process). An MDP M is specified by a tuple {S,A, P, R, Wy, ¥}, where

* Sdenotes the state space and A denotes the action space,

P:SxAxS — [0,1] is the transition probability function that yields the probability of transitioning
into the next states sy, after taking an action a; at the current state s,

R :S§8xA — Ris the reward function that assigns the immediate reward for taking an action a, at
state s¢,

Uo: S — [0,1] is the probability distribution that specifies the generation of the initial state, and

y € [0,1] denotes the discount factor that accounts for how much future events lose their value as
time passes.

RL aims to maximize the expected cumulative reward rather than the immediate one.

G: = Re+VRey1 + .+ v Reyr R, P50



Markov Decision Process (MDP)

Definition (Markov decision process). An MDP M is specified by a tuple {S,A, P, R, W, v}

In essence, we want the agent to maximize

\ E[G; | St,do(A; = a)],

* the expected cumulative reward across a sequence of interventions.

e e e e e e e e e e e e e e — - ———

RL aims to maximize the'expected cumulative rewgrdirgther than the immediate one.

P51



Markov Decision Process (MDP)

Definition (Markov decision process). An MDP M is specified by a tuple {S,A, P, R, W, v}

We can always cast an MDP into an SCM without imposing
any extra constraints.

. * The state, action, and reward at each step correspond to @ @
/“ .
endogenous variables. '

\ * The stote transition and reward functions are casted into

structural equations F in the SCM, represented by @‘@

deterministic functions with independent exogenous variables.

— et Causal Graph

P52



Policy

Definition (Policy). A policy is defined as the probability distribution of actions
at a give state:
T[(At = a|5t = S),VSt € 5,

where A; € A(s) is the state specific action space.

P53



Policy

Definition (Policy). A policy is defined as the probability distribution of actions
at a give state:
T[(At = a|St = S),VSt € 5,

where A; € A(s) is the state specific action space.

O
103

A policy T performs a soft intervention that
preserves the dependency of the action on the state

P54



Cateqgorizing RL Methods

f +
Observation
& Reward \

a
Action
a0 e h
’
Agent Environment Agent Buffer  Environment
Online Reinforcement Learning Offline Reinforcement Learning

P55



Cateqgorizing RL Methods

Observation
& Reward \ \
[ ]
Action
5 . 5 + .
’
Agent Environment Agent Buffer  Environment
Online Reinforcement Learning Offline Reinforcement Learning

The agent can actively intervene in the environment. The agent can only passively observe the outcomes.

P56



Cateqgorizing RL Methods

Q: Considering that they consumed rotten meat in
reality, would sailors have been protected from
scurvy if they had consumed enough citrus fruit?

—

IUXI IUZ, IUY/

2D G T

Counterfactual World

P(Yy—< X =8,y =)

:
Agent Buffer  Environment

Offline Reinforcement Learning

The agent can only passively observe the outcomes.

P57



Cateqgorizing RL Methods

Model-free methods involve learning
optimal policies or value functions
directly from interaction with the
environment without explicitly
puilding a model of the
environment’s dynamics.

Model-based methods, on the other
nhand, revolve around creating and
utilizing an explicit model of the
environment to simulate and plan
ahead for making informed
decisions in reinforcement learning
scenarios.

+

/—




Cateqgorizing RL Methods

The ability to learn “world models” — internal Model-based methods, on the other
models of how the world works — may be hand, revolve around creating and

the key to build human-level AL utilizing an explicit model of the

Yaonn Lecun \_

environment to simulate and plan
ahead for making informed
decisions in reinforcement learning
scenarios.

+

/—




Cateqgorizing RL Methods

The ability to learn “world models” — internal Model-based methods, on the other
models of how the world works — may be hand, revolve around creating and

the key to build human-level AL utilizing an explicit model of the

Yaonn Lecun L

environment to simulate and plan
ahead for making informed
decisions in reinforcement learning

O: How to construct an internal causal model sScenarios.

+

/—

that describes the causal relationships

\

+

between variables (concepts) governing the
data generation process in our world?

P60



Causal Reinforcement Learning

P61



Causal Reinforcement Learning

Definition (Causal Reinforcement Learning). Causal RL is an umbrella term for RL approaches that
incorporate additional assumptions or prior knowledge to analyze and understand the causal mechanisms
underlying actions and their consequences, enabling agents to make more informed and effective decisions.

P62



Causal Reinforcement Learning

Definition (Causal Reinforcement Learning). Causal RL is an umbrella term for RL approaches that
incorporate additional assumptions or prior knowledge to analyze and understand the causal mechanisms
underlying actions and their consequences, enabling agents to make more informed and effective decisions.

#£2_ Traditional RL methods focus on
Ll WLE learning the optimal policies

i through interactions with the

ﬁH environment, without explicitly

Causal RL, in contrast, go beyond
the traditional framework by
incorporating additional assumptions
or prior knowledge about causality,

F
| considering the causal empowering agents with a deeper

relationships between actions understanding of the underlying

and outcomes. dynamics of the world.

P63



Causal Reinforcement Learning

Definition (Causal Reinforcement Learning). Causal RL is an umbrella term for RL approaches that
incorporate additional assumptions or prior knowledge to analyze and understand the causal mechanisms
underlying actions and their consequences, enabling agents to make more informed and effective decisions.

Causal RL, in contrast, go beyond
the traditional framework by

Go beyond the evidence
of memory and sensesl!

incorporating additional assumptions
or prior knowledge about causality,
empowering agents with a deeper

understanding of the underlying
dynamics of the world.

P64



summary

Reinforcement Learning (RL) focuses on sequential decision-making problems, where an

agent intervenes in an environment with the goal of maximizing cumulative rewards.

] oo




summary

A Markov Decision Process (MDP) describes the dynamics of the environment during

interaction, and it can also be represented as an SCM.

] o0




summary

A policy guides an agent’s decision-making by mapping states to appropriate actions.

] o7




summary

RL methods can be categorized in various ways, such as online vs. offline and model-free vs.

model-based methods.

] o8




summary

Causal RL aims to integrate assumptions or knowledge regarding the underlying causal

relationships within the data to inform decision-making.

] o0




summary

e Reinforcement Learning (RL) focuses on sequential decision-making problems, where an

agent intervenes in an environment with the goal of maximizing cumulative rewards.

e A Markov Decision Process (MDP) describes the dynamics of the environment during

interaction, and it can also be represented as an SCM.
e A policy guides an agent’s decision-making by mapping states to appropriate actions.

e RL methods can be categorized in various ways, such as online vs. offline and model-free vs.

model-based methods.

e Causal RL aims to integrate assumptions or prior knowledge about the underlying causal

relationships within the data to enhance decision-making.

] "o




Tutorial Qutline

K B E B

O
O
O
O

Introduction
Causality
Reinforcement Learning

Causal Reinforcement Learning

Sample Efficiency
Generalization
Spurious Correlation

Beyond Return




Causal RL

Environment

Agent

v

'S

Buffer

Model

Policy
/Value
functions

a

For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

P72



Causal RL

@ Agent

v

Environment @ @
@ Model

) Buffer %@

Policy
/Value
functions

79

For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.

Other Environments

>
®

@ fijg

Humans

P73



Sample Efficiency

At la:
an b

ALL sysrfms}'o

[&] Atphastar

AlphaGo AlphaStar OpenAl Rubik’'s Cube

3 X 107games of self-play 2 x 102 years of self-play 10* years of simulation

P74



Sample Efficiency

'_ ; [] Atphastar

AlphaGo AlphaStar OpenAl Rubik’'s Cube

3 X 107games of self-play 2 x 102 years of self-play 10* years of simulation

Does human learning also require such a large sample size? P75



Sample Efficiency

RO1

RO2

RO3

How can exploration be made more efficient?

Is all unexplored area in the state space equally important?

What are the causal variables that govern the environmental dynamics?

Can we accelerate the learning process utilizing these factors?

How can agents be equipped with introspective capabilities?

Can agents effectively learn from imaginative experiences?

P76



Directed Exploration

RO1
How can exploration be made more efficient?

[s all unexplored area in the state space equally important?

P77



Directed Exploration  cesisas

R

Q How can exploration be made more efficient?
1

Is all unexplored area in the state space equally important?

(a) Causal Graph G (c) Influence of A on S7 and S5

Figure 1: Causal graphical model capturing the environment transition from state S to S’ by action
A, factorized into state components. (a): Viewed globally over all time steps, all components of the
state and the action can influence all state components at the next time step. (b, ¢): Given a situation
S = s, some influences may or may not not hold in the local causal graph Gs—s. In this paper, our
aim is to detect which influence the action has on S’, i.e. the presence of the red arrows.

For more information, check
“Causal Influence Detection

for Improving Efficiency in

Reinforcement Learning”,
NeurIPS 2021

Figure 8: FETCHROT-
TABLE. The table rotates
periodically.
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For more information, check
“Causal Influence Detection

for Improving Efficiency in

. ' Reinforcement Learning’,
Directed exploration  cowssces

How can exploration be made more efficient?

RO1 | |
Is all unexplored area in the state space equally important?
(a) Causal Graph G (c) Influence of A on S7 and S5 Figure 8: FETCHROT-
TABLE. The table rotates
How to infer the influence the action has in a specific state configuration § = s7? periodically.
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For more information, check
“Causal Influence Detection

for Improving Efficiency in

. ' Reinforcement Learning’,
Directed exploration  cowssces

How can exploration be made more efficient?

RO1 | |
Is all unexplored area in the state space equally important?
(a) Causal Graph G (c) Influence of A on S7 and S5 Figure 8: FETCHROT-
TABLE. The table rotates
How to infer the influence the action has in a specific state configuration § = s7? periodically.

Conditional Action Influence (CAI)

Cli(s) = I(S]-’;A |S=5) =Equn [DKL (PSJ’-|s,a
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For more information, check
“Causal Influence Detection

for Improving Efficiency in

Reinforcement Learning”,

Causal Graph .
NeurIPS 2021

How can exploration be made more efficient?

RO1

s all unexplored area in the state space equally important?
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Visualizing CAI

*  Causal influence as intrinsic motivation
* Greedy w.r.t action influence

* Causal influence as replay priority
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Figure 5: Performance of active exploration
in FETCHPICKANDPLACE depending on the
fraction of exploratory actions chosen actively
(Eq. 6) from a total of 30% exploratory actions.

Agent makes Contact |

Active Exploration

— 0% —T75%
— 25% — 100%
— 50%

4 8 12 16 20

Rollouts x 1000

For more information, check
“Causal Influence Detection

for Improving Efficiency in

Reinforcement Learning”,
NeurIPS 2021
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Figure 6: Experiment comparing exploration

strategies on FETCHPICKANDPLACE. The com-

bination of active exploration and reward bonus

yields the largest sample efficiency. P82




Causal RL
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.

Other Environments

>
®
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Causal Representation

RO2
VWhat are the cousal variables that govern the environmental dynamics?

Can we accelerate the learning process utilizing these factors?
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Causal Representation

VWhat are the causal variables that govern the environmental dynamics?

RO2

Can we accelerate the learning process utilizing these factors?

Principal Components of Trajectories

'5'@@'
m

Unroll-able (Cube) Roll-able (Sphere)

- psssope (986808
— e

Unflipp-able (High Mass) Flipp-able (Low Mass)

{IPP -

Large enough to push (Large Size) Too small to push (Small Size)

STy sCL LN e

y

Figure 3. Discovered hierarchical latent space. The agent learns experiments that differentiate the full set of blocks in ShapeSizeMass
into hierarchical binary clusters. At each level, the environments are divided into 2 clusters on the basis of the value of a single causal
factor. We also show the principal components of the trajectories in the top left. For brevity, the full of extent of the tree is not depicted

here. For each level of hierarchy k, there are 2% number of clusters.

For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised
Experiments for

Causal Representation
Learning”, ICML 2021

P85



Causal Representation

VWhat are the causal variables that govern the environmental dynamics?

RO2

Can we accelerate the learning process utilizing these factors?

Principal Components of Trajectories
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m

Causal Factorl: Shape Unroll-able (Cube) Roll-able (Sphere)

T #espsss. —988PbesT
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Causal Factor2: Mass
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Figure 3. Discovered hierarchical latent space. The agent learns experiments that differentiate the full set of blocks in ShapeSizeMass
into hierarchical binary clusters. At each level, the environments are divided into 2 clusters on the basis of the value of a single causal
factor. We also show the principal components of the trajectories in the top left. For brevity, the full of extent of the tree is not depicted

here. For each level of hierarchy k, there are 2% number of clusters.

For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised
Experiments for

Causal Representation
Learning”, ICML 2021

How to empower agents to discover
semantically meaningful experimental
behaviors rather than maximizing
reward for a particular task?
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Causal Representation

RO2

VWhat are the causal variables that govern the environmental dynamics?

Can we accelerate the learning process utilizing these factors?

2.8

. fric aO:Tshape

Figure 2. Gated Causal Graph. A subset of the unobserved parent
causal variables influence the observed variable O. The action
sequence ap.r serves a gating mechanism, allowing or blocking
particular edges of the causal graph using the implicit Causal
Selector Function (Equation 4).

For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised
Experiments for

Causal Representation
Learning”, ICML 2021

How to empower agents to discover
semantically meaningful experimental
behaviors rather than maximizing
reward for a particular task?
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For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised

COUSO| Repregentgthn ICM Experiments for

Causal Representation
Learning”, ICML 2021

VWhat are the causal variables that govern the environmental dynamics?

Can we accelerate the learning process utilizing these factors?
Independent Causal Mechanism | graviy | | friction | How to empower agents to discover
_ semantically meaningful experimental
ay.8Y a,.pftic a,.shape
0:T 0:T 0:T . . ..
‘ behaviors rather than maximizing
. o reward for a particular task?
The information in an observed @ X

trajectory is the sum of information

“mjeded” into it from the mump‘e Figure 2. Gated Causal Graph. A subset of the unobserved parent
causal variables influence the observed variable O. The action

causes . . . .
sequence ag.7 serves a gating mechanism, allowing or blocking
particular edges of the causal graph using the implicit Causal

The information content will be Selector Function (Equation 4).

greater for a larger number of
causal parents in the graph.
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For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised
1 Experiments for
CO u SO | R e p r e S e nt O t | O n e Causal Representation
Learning”, ICML 2021

VWhat are the causal variables that govern the environmental dynamics?

RO2

Can we accelerate the learning process utilizing these factors?

One-Factor-at-A-Time | gravity | [ friction |
semantically meaningful experimental

9.7 ag.™ agg°hape . L
behaviors rather than maximizing
reward for a particular task?

How to empower agents to discover

We want to search for one causal @
factor at a time.

‘ Figure 2. Gated Causal Graph. A subset of the unobserved parent
causal variables influence the observed variable O. The action

sequence ap.r serves a gating mechanism, allowing or blocking

Find an action sequence for which  particular edges of the causal graph using the implicit Causal

the number of causal parents of jg  Setector Function (Equation 4).

low, i.e., the complexity of O.

*

Independent Causal Mechanism P89




For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised

CO u S O | R e p r e S e nt O t | O n 1o (iiiiz;:ﬂ:;;fefgmgt‘om

Learning”, ICML 2021

VWhat are the causal variables that govern the environmental dynamics?

RO2

Can we accelerate the learning process utilizing these factors?

Set of environments

Model M How to empower agents to discover

\‘*\SimplcmodclM‘cnwdcsz(,, semantically meaningful experimental
L) behaviors rather than maximizing
reward for a particular task?

Figure 9. Overview of training. The experiment planner generates a trajectory of actions which is applied to each of the environments
with varying causal factors namely mass, shape and size of blocks. For each environment, an observation trajectory or state O° € O
is obtained. A simple model with fixed low expressive power is used to approximate the generative model for O. The "information
overflow" L(O|M) is returned as negative reward forcing O to be caused by few causal factors.

Minimizing the complexity » Maximizing the causal curiosity
ay.r = argmin L(0O|M) ag.r = argmax —L(0|M)
ao:T ao.T
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For more information, check

“Causal Curiosity: RL Agents

Discovering Self-supervised

CO u S O | R e p r e S e nt O t | O n 1o (iiiiz;:ﬂ:;;fefgmgt‘om

Learning”, ICML 2021

VWhat are the causal variables that govern the environmental dynamics?

RO2

Can we accelerate the learning process utilizing these factors?

Set of environments

Model M’

How to empower agents to discover

le model M’ encodes z, semantically meaningful experimental
behaviors rather than maximizing
reward for a particular task?

Figure 9. Overview of training. The experiment planner generates a trajectory of actions which is applied to each of the environments
with varying causal factors namely mass, shape and size of blocks. For each environment, an observation trajectory or state O° € O
is obtained. A simple model with fixed low expressive power is used to approximate the generative model for O. The "information
overflow" L(O|M) is returned as negative reward forcing O to be caused by few causal factors. Assume M is a bimodal

clustering model.
» Ma
ay.r = argmin L(O|M ay.r = argmax —L(0|M

ao:T ao.T

Minimizing the complexity g the causal curiosity
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Causal Factorl: Shape Unroll-able (Cube) . Roll-able (Sphere)

Causal Factor2: Mass

CO usda | FO cto 7’3 : S\ ze Large enough to push (Large Size) Too small to push (Small Size)

Causal Representation o

VWhat are the causal variables that govern the environmental dynamics?

RO2

Can we accelerate the learning process utilizing these factors?
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m

Principal Components of Trajectories
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Unflipp-able (High Mass) Flipp-able (Low Mass)

{FPP - {PPPS -
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Best Case Rewards
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Figure 3. Discovered hierarchical latent space. The agent learns experiments that differentiate the full set of blocks in ShapeSizeMass
into hierarchical binary clusters. At each level, the environments are divided into 2 clusters on the basis of the value of a single causal
factor. We also show the principal components of the trajectories in the top left. For brevity, the full of extent of the tree is not depicted
here. For each level of hierarchy k, there are 2% number of clusters.

» A -1t ® Additive reward
=i 114 Curious (ours)
Training epochs for CEM Planner Training epochs for CEM Planner

For more information, check
“Causal Curiosity: RL Agents
Discovering Self-supervised

Experiments for
Causal Representation
Learning”, ICML 2021

How to empower agents to discover
semantically meaningful experimental
behaviors rather than maximizing
reward for a particular task?

S o
. ‘g oetee? 0y .“m

‘/',{‘/ ® Vanilla CEM

5 8 8 8 8

mfwf

Worst Case Rewards

The behaviors discovered by the agents while optimizing
causal curiosity show high zero-shot Generalization
Ability and converge to the same performance as
conventional planners for downstream tasks.
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.
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P93



Counterfactual Reasoning

RO3
How can agents be equipped with introspective capabilities?

Can agents effectively learn from imaginative experiences?

P94



For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Countertactual Reason

How can agents be equipped with introspective capabilities”?

Y

Can agents effectively learn from imaginative experiences?
FACTUAL WORLD COUNTERFACTUAL WORLD
x® y® yA)
X) " - AUGMENTATION - -
\.@ . Different .
@ P : X@ Y@ 7@ Interventions *
+ = + =
ABDUCTION ACTION PREDICTION
X = — Uy =fx_1(X) ®\‘@ X = fX(UX) — X =
ey
Y = — Uy =fy'(Y) y Y=do(Y =y) — Y =
— Y =
Z = — Uz = fz_l(X.Y,Z) Z= fz(X, Y, Uz) — Zy_y=
Intervention
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Countertactual Reason

How can agents be equipped with introspective capabilities”?

RO3

Can agents effectively learn from imaginative experiences?

initial state (level) observations
S1=U; O1 O2 O3 Or
(NN
3k F a, -
n
| |

backward RNN

DRAW model

inference model

Figure 3: Top: PO-SOKOBAN. Shown on the left is a procedurally generated initial state. The
agent is shown in green, boxes in yellow, targets in blue and walls in red. The agent does not
observe this state but a sequence of observations, which are masked by iid noise with 0.9 probability,
except a 3x3 window around the agent. Bottom: Inference model. For counterfactual inference in
PO-SOKOBAN, we need the (approximate) inference distribution p(Us; |hz) over the initial state
Us; = 51, conditioned on the history of observations hr. We model this distribution using a DRAW
generative model with latent variables Z, which are conditioned on the output of a backward RNN
summarizing the observation history.

For more information, check

“Woulda, Coulda, Shoulda:

Counterfactually-Guided

Policy Search”, ICLR 2019
NQ scu y
8 S—
M
] //;M‘/“ _—
/ # —— CF-GPS (ours)
§4 Y # GPS-like
‘q;j / MB-PS
/ model-free
2 f e
0 =
0.0 0.2 0.4 0.6 0.8 1.0
# off-policy transitions le7

Counterfactually-Guided Policy
Search (CF-GPS) outperforms a
naive model-based RL (MB-PS)
algorithm as well as model-free

methods
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“Causal Reinforcement
Learning: A Survey”, 2023

Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.
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Generalization Ability

Jacob Andreas

@jacobandreas
Deep RL is popular because it's the only area in ML where it's socially
acceptable to train on the test set.

6:27 AM - Oct 29, 2017

111 Reposts 10 Quotes 627 Likes 4 Bookmarks
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Generalization Ability

‘ [Submitted on 19 Sep 2017 (v1), last revised 30 Jan 2019 (this version, v3)]

Deep Reinforcement Learning that Matters

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, David Meger

oy}

6 In recent years, significant progress has been made in solving challenging problems across various domains using deep
reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is
vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward.

1 In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make

reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult
to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed
by reproducibility, proper experimental technigues, and reporting procedures. We illustrate the variability in reported metrics and
results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible.
We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results

that are non-reproducible and easily misinterpreted.
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Generalization Ability

‘ [Submitted on 19 Sep 2017 (v1), last revised 30 Jan 2019 (this version, v3)]

Deep Reinforcement Learning that Matters
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Generalization Ability

o What does generalization mean for agents?

How can agents achieve reliable generalization despite unknown variations?

What knowledge can be transferred?
RQ2
How can algorithms be designed to facilitate efficient adaptation?

P103



Generalization Ability

RO1
VWhat does generalization mean for agents?

How can agents achieve reliable generalization despite unknown variations?

P104



What does generalization mean for agents?

How can agents achieve relioble generalization despite unknown variations”?

Train and Test Distribution Graphical Models

Example Benchmarks

Singleton Environments

IID Generalisation Environments

OOD Generlisation Environments

MDP CMDP CMDP
9"*" "*’4 01’% '%
ll ||
, ’* -
B ] | O )
P..(¢) = R.(c) R..()#p.(c)
Train = Test Train Distribution = Test Distribution Train Distribution # Test Distribution

For more information, check

in Deep Reinforcement

Learning”, 2021

“A Survey of Generalisation

P105



Genera

RO1

zation ADI

Ty

What does generalization mean for agents?

How can agents achieve relioble generalization despite unknown variations”?

Train and Test Distribution Graphical Models

Example Benchmarks
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Train = Test

R..(¢) = R.(¢)

Train Distribution = Test Distribution
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Train Distribution # Test Distribution

For more information, check

“A Survey of Generalisation

in Deep Reinforcement
Learning”, 2021
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Generalization Ability

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

»
G
@‘,‘!@
o2

Each intervention defines a new MDP but a non-causal
model can only captures one of them.

For more information, check

“Causal Reinforcement

Learning: A Survey”, 2023
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For more information, check

“Causal Reinforcement

Learning: A Survey”, 2023

Generalization Ability

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

» Different noises, e.q., black-out perturbation.

Each intervention defines a new MDP but a non-causal
model can only captures one of them. P108



For more information, check

“Causal Reinforcement

Learning: A Survey”, 2023

Generalization Ability

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

» Different goals, e.q., target locations.

Each intervention defines a new MDP but a non-causal

DA@

model can only captures one of them. P109



For more information, check

“Causal Reinforcement

Learning: A Survey”, 2023

Generalization Ability

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

» Different physical properties, .., mass.

Each intervention defines a new MDP but a non-causal
model can only captures one of them. P110



Generalization

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

CaDM TMCL
- s I o oo
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Figure 1: (a) The illustration of why historical states and actions are encoded in environment-specified
factor Z, (b)(c)(d) The PCA visulization of estimated context (environmental-specific) vectors in
Pendulum task, where the dots with different colors denote that the context vector (after PCA)
estimated from different environments. More visualization results are given at Appendix A.13.

For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

Generalization in Model-Based
Reinforcement Learning”, ICLR 2022
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What does generalization mean for agents?

How can agents achieve reliable generalization despite unknown variations?
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Figure 1: (a) The illustration of why historical states and actions are encoded in environment-specified
factor Z, (b)(c)(d) The PCA visulization of estimated context (environmental-specific) vectors in
Pendulum task, where the dots with different colors denote that the context vector (after PCA)
estimated from different environments. More visualization results are given at Appendix A.13.

For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

Generalization in Model-Based
Reinforcement Learning”, ICLR 2022

How can the extraction of contextudl
variable Z from past transition
segments be improved to ensure that
Z maintains its crucial property of being
similar in the same environment and
dissimilar in different ones for effective
model generalization?
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Generalization

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

al
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s Oa—?ﬂ:l:] Prediction O sy O sty

Concatenation Head
Figure 2: An overview of our Relational Intervention approach, where Relational Encoder, Prediction
Head and Relational Head are three learnable functions, and the circles denote states (Ground-Truths
are with red boundary, and estimated states are with black boundary), and the rectangles denote
the estimated vectors. Specifically, prediction Loss enables the estimated environmental-specified
factor can help the Prediction head to predict the next states, and the relation Loss aims to enforce
the similarity between factors estimated from the same trajectory or similar trajectories.

For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

Generalization in Model-Based
Reinforcement Learning”, ICLR 2022

How can the extraction of contextudl
variable Z from past transition
segments be improved to ensure that
Z maintains its crucial property of being
similar in the same environment and
dissimilar in different ones for effective
model generalization?
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What does generalization mean for agents?

How can agents achieve reliable generalization despite unknown variations?
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For more information, check

“A Relational Intervention Approach

for Unsupervised Dynamics
Generalization in Model-Based

Reinforcement Learning”, ICLR 2022

How can the extraction of contextudl
variable Z from past transition
segments be improved to ensure that
Z maintains its crucial property of being
similar in the same environment and
dissimilar in different ones for effective
model generalization?
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For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

Generalization in Model-Based

Reinforcement Learning”, ICLR 2022

What does generalization mean for agents?

How can agents achieve reliable generalization despite unknown variations?
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What does generalization mean for agents?

For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

Generalization in Model-Based

Reinforcement Learning”, ICLR 2022

How can the extraction of contextudl
variable Z from past transition
segments be improved to ensure that
Z maintains its crucial property of being
similar in the same environment and
dissimilar in different ones for effective
model generalization?

Estimating trajectory invariont information
is insufficient because the estimated Zs in
the same environment will also be pushed

How can agents achieve reliable generalization despite unknown variations?
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For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

O n The causal effects induced by Generalization in Model-Based
the same context are similar. Reinforcement Learning”, ICLR 2022

Generalizat

What does generalization mean for agents?

RO1

How can agents achieve reliable generalization despite unknown variations?

How can the extraction of contextudl
variable Z from past transition
segments be improved to ensure that
Z maintains its crucial property of being
similar in the same environment and

Randomize

@) andomize dissimilar in different ones for effective

Figure 3: (a) The illustration of causal graph, and the red line denotes the direct causal effect from Z model generalization?
to S¢41. (b) The illustration of estimating the controlled causal effect.
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The estimated Zs in the same environment should have similar causal effect on Sei1. P117



The causal effects induced by

Generalization

What does generalization mean for agents?

the same context are similar.

RO1
How can agents achieve reliable generalization despite unknown variations?
Table 3: The prediction errors of methods on test environments
CaDM (Lee et al., 2020) TMCL (Seo et al., 2020) Ours
Hopper 0.0551+£ 0.0236 0.0316 = 0.0138 0.0271 + 0.0011
Ant 0.3850 + 0.0256 0.1560 + 0.0106 0.1381 + 0.0047
C_Halfcheetah 0.0815 + 0.0029 0.0751 £0.0123 0.0525 + 0.0061
HalfCheetah 0.6151 £ 0.0251 1.0136 £+ 0.6241 0.4513 +0.2147
Pendulum 0.0160 +0.0036 0.0130+£ 0.0835 0.0030 + 0.0012
Slim_Humanoid 0.8842 + 0.2388 0.3243 + 0.0027 0.3032 + 0.0046
Halfcheetah Pendulum Halfcheetah Pendulum
12000 N f“"““‘" AP 30 & : CaDM ) ' 3§ ¥ : CabM ) )
10000 el J P "V. ; V“ 3 . Ours (no intervention) . ina 2::: (no intervention)
2 g0 —<— Ours (nointervention) £ o g ] ""m...._
H —— oubs ¢ 3 i \ o
PPN | Bl A . ‘\“;::'.::';:::Z

2000 AP ©
e

©  —— Ours s

2 3
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Figure 6: (a) The average rewards of trained model-based RL agents on unseen environments. The

results show the mean and standard deviation of returns averaged over three runs. (b) The average

prediction errors over the training procedure.

10 15
Timesteps (*10°4)

For more information, check
“A Relational Intervention Approach

for Unsupervised Dynamics

Generalization in Model-Based
Reinforcement Learning”, ICLR 2022

How can the extraction of contextudl
variable Z from past transition
segments be improved to ensure that
Z maintains its crucial property of being
similar in the same environment and
dissimilar in different ones for effective
model generalization?
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“Causal Reinforcement
Learning: A Survey”, 2023

Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.
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Knowledge lTranster

RO2
VWhat knowledge can be transferred?

How can algorithms e designed to facilitate efficient adaptation?
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Knowledge lTranster

What knowledge can be transferred?

RO2

How can algorithms be designed to facilitate efficient adaptation?

Moving directions | Agent | Hard-coded
|

r \
[ 10 | e BN o0 o @ | 0|
Pong
L
d
: +—>
: I Racket
Original Orientation Size Color Noise Reward

J

Figure A8: Visual example of the original Pong game and the various change factors. The light blue

arrows are added to show the direction in which the agent can move.

For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

Reinforcement Learning”,
ICLR 2022
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For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

K MNOW | e d q & —|_ N Sfe 8 Reinforcement Learning’”,

ICLR 2022

What knowledge can be transferred?

How can algorithms be designed to facilitate efficient adaptation?
B - — S N How to adapt reliably and
I efficiently to changes
L . .
d across domains with a few
: — . samples from the target
I Racket . X .
Original Orientation Size Color Noise Reward domain, even in partially
g Moving directions | Agent | Hard-coded ) observable environments?

Figure A8: Visual example of the original Pong game and the various change factors. The light blue
arrows are added to show the direction in which the agent can move.
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For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

Knowledge Transfer sseuvcoamssn SIS

ICLR 2022

What knowledge can be transferred?
RO2

How can algorithms be designed to facilitate efficient adaptation?

0.1 0, O How to adapt reliably and
i ] ] efficiently to changes
614 |1 | 614 across domains with a few
— S S1e — S e samples from the target
— — = domain, even in partially
$2.1-1 52, $2,1+1 )
observable environments?
53,1-1 534 53,141
a1 4 (8]
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For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

Reinforcement Learning”,

K ﬂ O\/\/ | e d q e —|_ r O ﬂ Sfe r Sparse Mechanisms Shift LOLR 2095

What knowledge can be transferred?

RO2

How can algorithms be designed to facilitate efficient adaptation?

How to adapt reliably and
efficiently to changes
across domains with a few
samples from the target
domain, even in partially
observable environments?

i T Introduce a low-dimensional vector 8y to

w characterize the domain-specific information
in a compact way.
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For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

. _ Balirares t Learning’,
K MNOW | e d q c —|_ Fan Sfe " Sparse Mechanisms Shift IS'LHRO;;E% caring

What knowledge can be transferred?

RO2
How can algorithms be designed to facilitate efficient adaptation?
oy 0, 041 How to adapt reliably and
_ B 7Aih B _
_ (=] _ (&l - 7@ | efficiently to changes
|61 614} ) O] across domains with a few
S1i1 — T samples from the target
02',(1 ‘02'[(* . 02,/(; . . .
— — — B domain, even in partially
$2,6-1 S2.t $2,t41

observable environments?

531-1

7 BN

Shared across different domains.
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K ﬂ O\/\/ | edq e TrO ﬂ Sfe r Sparse Mechanisms Shift

What knowledge can be transferred?

RO2

How can algorithms be designed to facilitate efficient adaptation?

Source domains

Domain 1 j

’

Domain 2

J

Domain n

Domain-specific parameters

| e o
(%] L2

-~

X .
01 o
X i

X
Domain’»shé(ed representatiol

S1-1 ) Sie
/
S24-1 25
Sdi-1 Sd,t
> <
¥
A ~ Y
=Y CD
timeslice t-1 timeslice t

Model estimation

—

Target domain
n
> o
.DI
-

Optimal parametrised policy

”*(omin

farger)

Optimal target policy

Figure 1: The overall AdaRL framework. We learn a Dynamic Bayesian Network (DBN) over the
observations, latent states, reward, actions and domain-specific change factors that is shared across
the domains. We then characterize a minimal set of representations that suffice for policy transfer, so
that we can quickly adapt the optimal source policy with only a few samples from the target domain.

For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

Reinforcement Learning”,
ICLR 2022

How to adapt reliably and
efficiently to changes
across domains with a few
samples from the target
domain, even in partially
observable environments?

All we need to update in the target
domain is the low-dimensional 8.
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For more information, check
“AdaRL: What, Where, And
How to Adapt in Transfer

. . Reinforce t Learning”,
K ﬂ O\/\/ | e d q e —|_ r O ﬂ Sfe r Sparse Mechanisms Shift ISTRO;;;% earning

What knowledge can be transferred?

RO2

How can algorithms be designed to facilitate efficient adaptation?

Oracle Non-t PNN PSM MTQ AdaRL* AdaRL How to adapt reliably and
Upper bound  lower bound  (Rusu et al., 2016)  (Agarwal et al., 2021)  (Fakoor et al., 2020) ~ Ours w/o masks Ours
o 18.65 6.18 e 9.70 e 11.61e 15.79 @ 14.27 ¢ 18.97 efﬁcien‘[ly to changes
-0 (£2.43) (£2.43) (£2.09) (£3.85) (£3.26) (£1.93) (£2.00)
0 out 19.86 6.40 @ 9.54 e 10.82 @ 10.82 @ 12.67 @ 15.75 across domains with a few
-t (£1.09)  (£3.17) (£2.78) (£3.29) (£4.13) (£2.49) (£3.80)
iy 19.35 8.53 o 14.44 o 19.02 16.97 1852 e 19.14 samples from the target
Ml (£0.45)  (£2.08) (£2.37) (£1.17) (£2.02) (£1.41) (£1.05) . ' '
c 19.78 8.26 e 14.84 e 17.66 o 15.45 e 17.92 19.03 domain, even in partwa\ly
U (40.25)  (43.45) (£1.98) (£2.46) (£3.30) (£1.83) (£0.97) )
S 18.32 6.91 e 11.80 @ 12.65 @ 13.68 o 14.23 ¢ 16.65 observable environments?
Nl (£1.18)  (£2.02) (£3.25) (£3.72) (£3.49) (£3.19) (£1.72)
S out 19.01 6.60 o 9.07 e 8.45 @ 11.45 ¢ 12.80 @ 17.82
- (£1.04) (£3.11) (£4.58) (£4.51) (£2.46) (£2.62) (£2.35)
N in 18.48 5.51 e 12.73 o 11.30 @ 12.67 @ 13.78 @ 16.84
- (£1.25) (£3.88) (£3.67) (£2.58) (£3.84) (£2.15) (£3.13)
N out 18.26 6.02 ® 13.24 o 11.26 o 15.77 o 14.65 o 18.30
- (£1.11) (£3.19) (£2.55) (£3.15) (£2.12) (£3.01) (£2.24)

Table 3: Average final scores on modified Pong (POMDP) with Ni,;.4e¢ = 50. The best non-oracle
are marked in red. O, C, S, and N denote the orientation, color, size, and noise factors, respectively.
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“Causal Reinforcement
Learning: A Survey”, 2023

Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Spurious Correlation

7 - A Y

’ v Unobserved . User

1 2 I e Popularity ? Popularity ?

N , confounder preference
/ o \4

. Collider .
9 Exposure ’, Click Click
H . node
Does the correlation between X and Y Does the correlation between X and Y
indicate causation, or does it arise from an indicate causation, or does it arise from a
unobserved confounder? collider node?

Figure 8: Causal graph illustrating the two types of spurious correlations, with examples from real-world
applications.

Correlation does not imply causation.
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Spurious Correlation

“Data are profoundly dumb.”

Judea Pearl

People are biased.
Data is biased, in part because people are biased.

Algorithms trained on biased data are biased.

Yonn Lecun
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Spurious Correlation

“Data are profoundly dumb.”

Judea Pearl

People are biased.

Data is biased, in part because people are biased.

Algorithms trained on biased data are biased.

Yonn Lecun

VWhat types of spurious correlation exist in reinforcement learning”?

RO

How to eliminate or mitigate spurious correlations? P132



Spurious Correlation

RO
VWhat types of spurious correlation exist in reinforcement learning”’
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For more information, check

“Causal Confusion in
Imitation Learning”, NeurlPS

Spurious Correlation s e 201

RQ What types of spurious correlation exist in reinforcement learning”?

Scenario A: Full Information Scenario B: Incomplete Information

-

brak

policy attends to brake indicator policy attends to pedestrian

Figure 1: Causal misidentification: more information yields worse imitation learning performance. Model A
relies on the braking indicator to decide whether to brake. Model B instead correctly attends to the pedestrian.
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For more information, check

“Spurious Correlation

Reduction for Offline

Spurious Correlation o s

2021

RQ VWhat types of spurious correlation exist in reinforcement learning”?

Q == True Value
t =: Estimated Value
Suboptimal Confidence Band
v Data Points
-~ \ /. \ online RL setting offline RL setting
4 R
i R R
Optimal N , | e
\ y X 7 Ng N\, 7 N\
> a _4,// S // .
a a

Credit: NeurIPS 2020 Tutorial - Offline Reinforcement Learning:

Figure 1. An example of false correlation: the epistemic uncertainty is From Algorithms to Practical Challenges
correlated with the value, making a suboptimal action with high uncer-
tainty appear to be better than the optimal one.
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Other Sources of Data

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value

functions with causal reasoning.
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Beyond Return

Article = Machine Learning

Report calls for transparency in Al
automation

Centre for Data Ethics and Innovation calls for more transparency in algorithms

for machine learning in the public sector...
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Beyond Return

Article = Machine Learning

#Article « Al Strategy

.UKlaunch national standards for
algorithmic transparency

f{ The UK Government has announced one of the world'’s first national standards

for algorithm transparency
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Beyond Return

Article < Al Strategy

Need for responsible Al in some of
the world’s largest banks

Research shows one-third of North America and Europe’s largest banks lack
transparency and are not publicly reporting on their Al development

for algorithm transparency i
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Beyond Return

For more information, check

“Causal Reinforcement

Learning: A Survey”, 2023

Article « A

Ne¢
the

Researd

transpa

for alg;

€he New lork Eimes

[s an Algorithm Less Racist
Than a Loan Officer?

Digital mortgage platforms have the potential to reduce
discrimination. But automated systems provide rich

opportunities to perpetuate bias, too.

of

lack
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Beyond Return
MIT News

ON CAMPUS AND AROUND THE WORLD

< SUBSCRIBE

Large language models are biased. Can logic help
save them?

MIT researchers trained logic-aware language models to reduce harmful
stereotypes like gender and racial biases.

Rachel Gordon | MIT CSAIL
— March 3, 2023
opportunities to perpetuate bias, too.
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Beyond Return

Explainability - the ability to understand and interpret the decisions of an agent.

Fairness - agents should strive to genuinely benefit humans and promote social good,
avoiding any form of discrimination or harm towards specific individuals or groups.

Safety - agents should not prioritize higher returns over safety.

e OF Z?;E
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Takeaway

1. Enhancing Sample Efficiency through Causal Reinforcement Learning
C? Explore the areas that agents can cousally influence the environment.
C? Extract the causal factors to simplify the learning problem.

C? Generate counterfactual rollouts for data augmentation.

2. Advancing Generalization Ability and Knowledge Transfer through Causal Reinforcement Learning
C? Different interventions induce different MDPs and causal model can capture such variations.

C? Transfer the domain-invariant information and only adapt the changed causal mechanisms.

3. Addressing Spurious Correlations through Causal Reinforcement Learning

C? [dentify the factors that exhibit spurious correlations and address them with causal reasoning.

4. Consideration Beyond Return

C? Explanability, Fairness, Safety, ..
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Open Problems

1. Causal Learning in Reinforcement Learning

(’;“ Causal representation learning, causal discovery, causal dynamics learning, ...

2. Causality-aware Multitask, Meta, and Lifelong Reinforcement Learning

(’;“Orqgmze knowledge using causal structures.

3. Human-in-the-loop Learning and Reinforcement Learning from Human Feedback

4. Theoretical Advances in Causal Reinforcement Learning

(’;“ Identifiability, convergence, suboptimality, ..

5. Benchmarking Causal Reinforcement Learning

(’;“ How to design a reliable benchmark for causal RL methods? What metrics should be considered?

6. Real-world Causal Reinforcement Learning

(’;“ Applications, e.q., robotics, self-driving, healthcare, finance, ..
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For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023

Causal RL Survey
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Other Environments

Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value
functions with causal reasoning.
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1

Abstract

Reinforcement learning is an essential paradigm for solving sequential decision problems
under uncertainty. Despite many remarkable achievements in recent decades, applying
reinforcement learning methods in the real world remains challenging. One of the main
obstacles is that reinforcement learning agents lack a fundamental understanding of the
world and must therefore learn from scratch through numerous trial-and-error interact
They may also face challenges in providing explanations for their decisions and generalizing
the acquired knowledge. Causality, however, offers a notable advantage as it can formalize
knowledge in a systematic manner and leverage invariance for effective knowledge transfer.
This has led to the emergence of causal reinforcement learning, a subfield of reinforcement
learning that seeks to enhance existing algorithms by incorporating causal relationships into
the learning process. In this survey, we comprehensively review the literature on causal
reinforcement learning. We first introduce the basic concepts of causality and reinforcement
learning, and then explain how causality can address core challenges in non-causal rein-
forcement learning. We categorize and systematically review existing causal reinforcement
learning approaches based on their target problems and methodologies. Finally, we outline
open issues and future directions in this emerging field.

11S.

Introduction

“All reasonings concerning matter of fact seem to be founded on the relation of cause and effect. By means
of that relation alone we can go beyond the evidence of our memory and senses."

zhi-hong. deng @student.uts. edu.au

jing.jiang@uts. edu.au

guodong.long@uts.edu.auu

chengqi.zhang@Quts. edu.au

—David Hume, An Enquiry Concerning Human Understanding.

https://arxiv.org/abs/2307.01452

For more information, check

“Causal Reinforcement
Learning: A Survey”, 2023
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