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The Three Viewpoints of the Recommendation problem
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The Three Viewpoints of the Recommendation problem
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The Three Viewpoints of the Recommendation problem
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All roads lead to "Matching”
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B Matching is a much broader topic in the domain of Information Retrieval.

B Matching can be viewed as a special type of classification problems which
aims to predict the most relevant items/documents/answers.



Is real-world recommendation a prediction task?
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Reinforcement Learning
observation \-’ | | action _ .. :
= - RL Is a general-purpose framework for decision-making.
&  An agent selects actions

 [ts actions influence Its future observations
* Success Is measured by a scalar reward signal

Goal: select actions to maximize future rewards

UCL Course on RL by David Silver

DL + RL = Artificial General Intelligence!
—— David Silver (DeepMind)
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Reinforcement Learning
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Human-level control through deep reinforcement learning
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Mastering the game of Go with deep neural networks and tree search
Mastering the game of Go without human knowledge

Superhuman AI for heads-up no-limit poker:
Libratus beats top professionals

Openai five

Alphastar: Mastering the real-time strategy game starcraft Ii



More than Games!

pricing, trading

portfolio opt.
risk mgmt

4 ™

finance

DTRs
diagnosis

EHR/EMR education games

- N

healthcare

4 ™y
computer
systems

. /

topics in
computer
science

. J

games
\_ J

Go, poker
Dota, bridge
Starcraft

proficiency est.

adaptive

recommendation traffic signal

-

.,

N

education

S

deep reinforcement learning

control
4 N
transportation
\_ Y

4 M

robotics

. J/

sim-to-real
co-robot
control

computer
vision

4 Yy

\. vy

recognition
detection

adaptive
decision
control

4 ™

energy

N /

NLP

-

J

seq. gen.
translation

recommendation
e-commerce, OR
customer mgmt
, A
business

management
. /

4 . ™
sclence

engineering

\ art J

maths, physics
chemistry, music
drawing, animation

perception dialog, QA,IE,IR

Deep Reinforcement Learning by Yuxi LI

13



Challenges of Real-World Reinforcement Learning

Training off-line from the fixed logs of an external behavior policy.
Learning on the real system from limited samples.
High-dimensional continuous state and action spaces.

Safety constraints that should never or at least rarely be violated.

a & W b =

Tasks that may be partially observable, alternatively viewed as non-stationary or
stochastic.

Reward functions that are unspecified, multi-objective, or risk-sensitive.
System operators who desire explainable policies and actions.

Inference that must happen in real-time at the control frequency of the system.

© © N O

Large and/or unknown delays In the system actuators, sensors, or rewards.
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Can We Copy The Success of DL by
Offline (Data-driven) RL?



Offline Reinforcement Learning




Reinforcement Learning with Large Real-world Dataset

Robotics

[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning.
[2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database.

An Optimistic Perspective on Offline Reinforcement Learning
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Reinforcement Learning with Large Real-world Dataset

Robotics
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[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning.
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An Optimistic Perspective on Offline Reinforcement Learning



But .. Offline RL Iis Challenging!

Reinforcement Learning with Online Interactions
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Distribution mismatch Online vs. Offline

An Optimistic Perspective on Offline Reinforcement Learning



What Makes Offline Reinforcement Learning Difficult?

Distributional shift:

while our function approximator (policy, value function, or model) might be
trained under one distribution, it will be evaluated on a different distribution, due
both to the change In visited states for the new policy and, more subtly, by the
act of maximizing the expected return.
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Theorem 2.1 (Behavioral cloning error bound). If w(als) is trained via empirical risk minimization
on s ~ d"°(s) and optimal labels a*, and attains generalization error € on s ~ d"?(s), then
{(m) < C + H?¢ is the best possible bound on the expected error of the learned policy. ~#|ine

Theorem 2.2 (DAggererror bound). If w(als) is trained via empirical risk minimization on s ~ d” (s)
and optimal labels a*, and attains generalization error e on s ~ d”(s), then £(w) < C' + He is the
best possible bound on the expected error of the learned policy. online

a short theoretical illustration of how harmful distributional shift can be on the performance of policies



But .. Offline RL is Challenging!
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No New Corrective Feedback

An Optimistic Pers pective on Offline Reinforcement Learning



Offline Reinforcement Learning has a great
potential but we should be careful when we
deploy It In real-world production systems.



Breakout

All trained by discrete BCQ, an offline RL algorithm.






